
authN/Z for REST services

About me
● Software architect
● Consultancy
● Fixed price projects
● SecAppDev founder
● https://www.johanpeeters.com
● @YoPeeters

yo@johanpeeters.com

https://www.johanpeeters.com
https://www.johanpeeters.com
https://twitter.com/YoPeeters
https://twitter.com/YoPeeters
mailto:yo@johanpeeters.com
mailto:yo@johanpeeters.com

Agenda

Architectural principles Enabling technology

Externalise the Identity Provider OpenID Connect

Use self-contained security tokens JWT

Wishlist Enabling technology

Use Proof-of-Possession tokens JWT

Externalise the policy decision point UMA?

REST API consumers
Click to add text

● Web application

Click to add text

REST API consumers

● Web application
● SPAs

Click to add text

REST API consumers

● Web application
● SPAs
● Mobile apps

Click to add text

REST API consumers

● Web application
● SPAs
● Mobile apps
● Other REST services

Click to add text

REST API consumers

Traditional web applications

Web app

Legend

authZ

HTTPS connection

authN

browser

REST svc

trust boundary

HTTP connection

business logic

HTTP connection

This could work...

Web app

Legend

authZ

HTTPS connection

authN

browser

REST svc

trust boundary

Web app

business logic

HTTP connection

… but this is probably better

Web app

Legend

authZ

HTTPS connection

authN

browser

REST svc

trust boundary

Web app

business logic

identity claims

Single Page Applications (SPA) - also applies to mobile apps

REST svc

Legend

authZ

HTTPS connection

authN

browser

SPA
business logic

infrastructure
component

How does this pan out when calling multiple services?

REST svc

Legend

authZ

HTTPS connection

authN

browser

SPA
business logic

infrastructure
component

REST svc

REST svc

HTTP connection

How about an API Gateway?

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

Who or what are we authenticating?

user
agent

consumer

user

Let’s start with who

user
agent

consumer

HTTP connection

Sending credentials

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

credentials

Pros and cons?
Simple

The client impersonates the user

Identity management and API GW are tightly coupled

Identity
Provider

HTTP connection

Externalizing the IdP

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

credentials

Security token

1

2

3

4

5
6

7

points to a trusted party

Identity
Provider

HTTP connection

Further devolving responsibility for identity management

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

Brokered
IdP

Federated
IdP

Identity
Provider

HTTP connection

Federation

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

credentials

security token

Brokered
IdP

Federated
IdP

1

2

3

identity claims

4

5

6

7
8

9

6

Identity
Provider

HTTP connection

IdP brokering

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

credentials

security token

Brokered
IdP

Federated
IdP

1

2

redirect

8

8

9
10

11

3

authorization code

5

4

7

Generic OpenID Connect flow

+--------+ +--------+
	---------(1) AuthN Request-------->			
	+--------+			
		End-	<--(2) AuthN & AuthZ-->	
		User		
RP				OP
	+--------+			
	<--------(3) AuthN Response--------			
	---------(4) UserInfo Request----->			
	<--------(5) UserInfo Response-----			
+--------+ +--------+

From OpenID Connect Core ©The OpenID Foundation

http://openid.net/specs/openid-connect-core-1_0.html#Overview
http://openid.net/specs/openid-connect-core-1_0.html#Overview

OpenID Connect
● authN protocol implemented on top of OAuth 2.0, an authZ protocol

○ identity claims as resources
○ resource owner consents to accessing specific claims

● SSO across APIs and over time
● IdP, or OP, exposes a web app
● 3 flows:

○ Authorization code flow for web applications
○ Implicit flow for SPAs and mobile apps
○ Hybrid flow for …

Authorization code flow
The Authorization Code flow is suitable for Clients that can securely maintain a Client Secret between
themselves and the Authorization Server.

...

The Authorization Code Flow goes through the following steps.
1. Client prepares an Authentication Request containing the desired request parameters.
2. Client sends the request to the Authorization Server.
3. Authorization Server Authenticates the End-User.
4. Authorization Server obtains End-User Consent/Authorization.
5. Authorization Server sends the End-User back to the Client with an Authorization Code.
6. Client requests a response using the Authorization Code at the Token Endpoint.
7. Client receives a response that contains an ID Token and Access Token in the response

body.
8. Client validates the ID token and retrieves the End-User's Subject Identifier.

From OpenID Connect Core ©The OpenID Foundation

Implicit flow
The Implicit Flow is mainly used by Clients implemented in a browser using a scripting language.

...

The Implicit Flow follows the following steps:
1. Client prepares an Authentication Request containing the desired request parameters.
2. Client sends the request to the Authorization Server.
3. Authorization Server Authenticates the End-User.
4. Authorization Server obtains End-User Consent/Authorization.
5. Authorization Server sends the End-User back to the Client with an ID Token and, if

requested, an Access Token.
6. Client validates the ID token and retrieves the End-User's Subject Identifier.

From OpenID Connect Core ©The OpenID Foundation

Hybrid flow
The Hybrid Flow follows the following steps:

1. Client prepares an Authentication Request containing the desired request parameters.
2. Client sends the request to the Authorization Server.
3. Authorization Server Authenticates the End-User.
4. Authorization Server obtains End-User Consent/Authorization.
5. Authorization Server sends the End-User back to the Client with an Authorization Code and,

depending on the Response Type, one or more additional parameters.
6. Client requests a response using the Authorization Code at the Token Endpoint.
7. Client receives a response that contains an ID Token and Access Token in the response

body.
8. Client validates the ID Token and retrieves the End-User's Subject Identifier.

From OpenID Connect Core ©The OpenID Foundation

These tokens ...
ID Token

● OpenID Connect
● bearer
● standardized
● JWT

Access Token

● OAuth 2.0
● bearer
● not standardized
● ‘usually opaque to the client’

OAuth 2.0 access token
 Access tokens are credentials used to access protected resources. An
 access token is a string representing an authorization issued to the
 client. The string is usually opaque to the client. Tokens
 represent specific scopes and durations of access, granted by the
 resource owner, and enforced by the resource server and authorization
 server.

 The token may denote an identifier used to retrieve the authorization
 information or may self-contain the authorization information in a
 verifiable manner (i.e., a token string consisting of some data and a
 signature). Additional authentication credentials, which are beyond
 the scope of this specification, may be required in order for the
 client to use a token.

From RFC 6749 ©IETF

self-contained reference

holder-of-key (JWT)

bearer JWT

revocation

theft

OOPS!

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

 +--------------+
 | | +--------------+
 | |--(3) Presentation of -->| |
 | | JWT w/ Public | |
 | Presenter | PoP Key | |
 | | | |
 | |<-(4) Communication ---->| |
 | | Authenticated by | |
 +--------------+ PoP Key | |
 | ^ | |
 | | | |
 (1) Public (2) JWT w/ | Recipient |
 | PoP | Public | |
 | Key | PoP Key | |
 v | | |
 +--------------+ | |
 | | | |
 | | | |
 | | | |
 | Issuer | | |
 | | | |
 | | | |
 | | +--------------+
 +--------------+

 Figure 2: Proof of Possession with an Asymmetric Key

From RFC 7800 ©IETF

Proof-of-Possession Key Semantics for JWTs
 In the case illustrated in Figure 2, the presenter generates a
 public/private key pair and (1) sends the public key to the issuer,
 which creates a JWT that contains the public key (or an identifier
 for it) in the confirmation claim. The entire JWT is integrity
 protected using a digital signature to protect it against
 modifications. The JWT is then (2) sent to the presenter. When the
 presenter (3) presents the JWT to the recipient, it also needs to
 demonstrate possession of the private key. The presenter, for
 example, (4) uses the private key in a Transport Layer Security (TLS)
 exchange with the recipient or (4) signs a nonce with the private
 key. The recipient is able to verify that it is interacting with the
 genuine presenter by extracting the public key from the confirmation
 claim of the JWT (after verifying the digital signature of the JWT)
 and utilizing it with the private key in the TLS exchange or by
 checking the nonce signature.

From RFC 7800 ©IETF

Identity
Provider

HTTP connection

Assuming access token is also a JWT...

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

credentials

access token

1

2

3

4

5
6

7

ID token

points to a trusted party

Identity
Provider

HTTP connection

Fine-grained authZ

REST svc

Legend

authZ

HTTPS connection

authN

browser

trust boundary

SPA

business logic

infrastructure
component

REST svc

REST svc

credentials

access token

1

2

3

4

5
8

7

ID token

points to a trusted party

6

Demo

https://keycloak:8443/auth/admin
https://keycloak:8443/auth/admin

What if an attacker...
… forges a token?

… steals a token?

... bypasses the API Gateway?

... publishes a rogue client?

Who or what are we authenticating?

browser

consumer

user

Registering and authenticating the client

browser

consumer

user

Authenticating the client
Register the client

API keys are often

● Stored in the client
● Shared amongst potentially many clients
● Sent in clear text
● Hence not very secure

Signing is better than sending the secret across the wire

Looking forward to using Proof-of-Possession tokens

An authZ architecture
©2017 KeyCloak by RedHat

Apache License, Version 2.0

 +--------------+
 | resource |
 +---------manage (A)------------ | owner |
 | +--------------+
 | Phase 1: |
 | protect a control (C)
 | resource |
 v v
 +------------+ +----------+--------------+
		protection	
resource		API	authorization
server	<-protect (B)--	(needs	server
		PAT)	
+------------+ +----------+--------------+			
protected		authorization	
resource		API	
(needs RPT)		(needs AAT)	
 +------------+ +--------------+
 ^ |
 | Phases 2 and 3: authorize (D)
 | get authorization, |
 | access a resource v
 | +--------------+
 +---------access (E)-------------| client |
 +--------------+

 requesting party

From User-Managed Access (UMA) Profile of OAuth 2.0 ©Kantara Initiative

Who or what are we authenticating?

user
agent

consumer

user

Maybe next time...

consumer

user

Wrap-up discussion

Architectural principles Enabling technology

Externalise the Identity Provider OpenID Connect

Use self-contained security tokens JWT

Wishlist Enabling technology

Use Proof-of-Possession tokens JWT

Externalise the policy decision point UMA?

